
Docker
Deep Dive
Optimization techniques
for better Docker containers

0

Why you should
read this book?

accesto.com

There are many reasons why you should. Just to name a few:
cutting build times by half to save lots of time every day,
saving hundreds of megabytes of disk space, improving
project security, mastering Docker, or just paying attention
to the quality of Docker images and runtimes you create.

Still not interested? By using the described rules, I was able
to optimize an image from over 3GB to 800 MB in the
development version, and cut the build time by 4x.
I hope you are interested now :)

Table of contents

Theory 1

Docker container vs VM 2
Docker architecture 6
Docker build context 7
Docker image layers 7
Containers vs layers 10
Entrypoint vs CMD 13
Process handling 17

Actionable optimizations 20

Using proper base images 21
Optimizing dependencies 25
Cleaning cache 27
.dockerignore 27
Dockerfile instructions order 30
Logs 34
Entrypoint optimizations 36
Multi-stage images 39
Container labels 46

Tools and commands 48

Dive 48
Hadolint 53
Kompose 55
Pumba 56

Afterword 58

Dockerfile instructions order
Often overlooked, yet very powerful - optimizing the order
of instructions in your Dockerfile can have a tremendous
impact on its build performance. The reason for this is how
Docker layers work.

Because each step of the build process is a new layer,
nd each layer has a checksum that depends on the files in
that layer, ordering the instructions properly will introduce
huge benefits.

Let's take a look at the following Dockerfile:

FROM node:15
RUN npm install -g http-server
WORKDIR /app
COPY . /app/
RUN npm install
RUN npm run build
EXPOSE 8080
CMD [“http-server”, “dist”]

Quite straightforward - just a simple Dockerfile for a small
Vue application. If we modify some files, we can easily re-
build it to publish a new version:

2. ACTIONABLE OPTIMIZATIONS

30accesto.com

2. ACTIONABLE OPTIMIZATIONS2. ACTIONABLE OPTIMIZATIONS

In case of my Macbook Pro, it took 51s in total to rebuild

Such a Dockerfile might look familiar, in fact many of the
projects I worked on had similar Dockerfiles. Yet, this is
utterly suboptimal. Why? Because it won’t make use of
cache for the installation step, and as you might know
- npm install takes a while.

The result of npm install depends on two files: package.
json and package-lock.json. Only changes in these two
files will require running a npm install. If you fix a typo in
an html file, why would you run the npm install again?
You wouldn’t, but in the case of the above Dockerfile, you
do. That's because the small html file change also
changes the layer checksum at line 6 , thus making
the build process longer than it should be.

A fixed Dockerfile would look like this:

docker build -t instruction_order:pre -f Dockerfile.pre

31accesto.com

2. ACTIONABLE OPTIMIZATIONS

See the di!erence? It’s very subtle, and easy to implement.
But what's the di!erence in build time? Have a look:

FROM node:15
RUN npm install -g http-server
WORKDIR /app
COPY package*.json ./
RUN npm install
COPY . .
RUN npm run build
EXPOSE 8080
CMD [“http-server”, “dist”]

0

10

20

30

40

50

60

Optimized Unoptimized

Instruction order time influence

Re
bu

ild
 ti

m
e

[s
]

32accesto.com

2. ACTIONABLE OPTIMIZATIONS

0

100

200

300

400

500

Optimized Unoptimized

460

240

Build time [s]

2. ACTIONABLE OPTIMIZATIONS

So, in introducing this simple two-line change, we reduced
from 51s to only 15s. That's almost 3,5 times faster!

Now in regards to the projects I work on, there are also
backend dependencies to be installed. It’s accomplished
by running Composer. The build time di!erence for both
npm and composer is as follows:

So using this simple trick, I was able to optimize the build
time by almost 50%, and save more than 3 minutes on
each build!

33accesto.com

Thank you for reading this sample.

For a full version of Docker Deep Dive go to:

https://accesto.com/books/docker-deep-dive/

https://accesto.com/books/docker-deep-dive/?utm_source=sample&utm_medium=sample&utm_campaign=docker

